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Abstract

Modern Transformer-based architectures often
rely on a single dedicated token (e.g., [CLS])
or uniform mean pooling to derive sequence
representations. While these strategies simplify
the final embedding step, they risk overlooking
valuable signals gained from the model’s his-
torical successes and failures. We propose a
feedback-guided pooling mechanism that dynam-
ically reweights token embeddings according to
an external feedback vector capturing past perfor-
mance. By emphasizing frequently misclassified
or pivotal tokens, our method enriches sequence
representations with top-down cues and enhances
interpretability. Experiments across multiple NLP
and vision tasks show that this lightweight module
can outperform conventional pooling techniques
in both accuracy and robustness—without impos-
ing significant computational overhead. These
findings suggest that even minimal feedback inte-
gration can substantially improve how Transform-
ers aggregate information across tokens.

1 Introduction
Transformer-based models have achieved remarkable suc-
cesses in various domains, ranging from natural language
processing to computer vision. Central to these architec-
tures is the process of converting token-level hidden states
into a single sequence-level representation for tasks such
as classification or sequence-to-sequence prediction. Al-
though commonly used approaches like mean pooling or
[CLS]-token extraction are conceptually simple and com-
putationally efficient, they overlook an important dimension:
historical feedback about how the model has performed in
the past.

Mean pooling, for instance, treats all positions equally and
thus may dilute critical cues from salient or challenging
tokens. Similarly, [CLS]-token pooling fixates on a single
learned embedding that might not always adapt sufficiently
to the diverse tokens in an input. Recent work has explored
attention-based pooling as a more flexible alternative, yet

many of these methods only consider information contained
within the same input sequence. In real-world scenarios,
however, each new input can be processed with knowledge
gleaned from previously seen data—whether they were suc-
cesses, mistakes, or partially labeled samples. This prompts
a fundamental question: Can we leverage a global notion
of feedback to guide the pooling of local token representa-
tions?

Toward feedback-aware pooling. In domains where
models operate iteratively on large corpora or streams of in-
puts, it is intuitive that recurring errors or patterns should in-
fluence how new data are processed. For example, tokens or
token patterns that repeatedly lead to misclassification could
be highlighted or downplayed in subsequent inference steps.
Likewise, in reinforcement learning and interactive tasks,
reward signals accumulated over time can be used to shape
the model’s attention on certain features. These insights
motivate us to integrate a feedback vector—representing his-
torical performance metrics or other high-level signals—into
the final pooling layer.

Our proposal: Feedback-Guided Weighted Pooling
(FGWP). In this paper, we introduce a simple yet power-
ful module, Feedback-Guided Weighted Pooling (FGWP).
At a high level, FGWP:

• Learns to assign token-level weights conditioned on a
global feedback vector;

• Adapts these weights dynamically across training itera-
tions or episodes;

• Preserves the Transformer’s underlying architecture,
replacing only the final pooling step;

• Adds minimal overhead to the total parameter count
and runtime.

Concretely, FGWP processes each token embedding through
a small network that also incorporates an external feedback
vector. A softmax function then converts these token-level
“importance” scores into a set of weights, which define
the final sequence embedding via a weighted sum of token
states.
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Contributions. Our main contributions can be summa-
rized as follows:

1. We highlight the limitations of traditional Transformer
pooling and provide empirical evidence that real-world
tasks benefit from feedback-driven embeddings.

2. We introduce FGWP, an easily pluggable module that
conditions token-aggregation on historical or externally
provided performance signals.

3. We demonstrate through experiments on multiple NLP
benchmarks (IMDb, AG News, WikiText-2) and vision
tasks (CIFAR-10, ImageNet) that our method improves
accuracy and can enhance interpretability, all while
maintaining a lean memory footprint.

Overall, FGWP takes a step toward bridging the gap be-
tween classic, token-level self-attention and the broader
historical context in which models operate, enabling Trans-
formers to generate more contextually informed representa-
tions.

Extended Discussion of FGWP’s Motivation. Beyond
the immediate arguments for incorporating feedback signals,
several additional considerations highlight why feedback-
aware pooling is both practical and necessary:

• Real-world constraints. In online or continual-
learning settings, models often see streams of data
where performance can degrade if recurring errors are
not explicitly addressed. FGWP provides a mechanism
to adjust the final representation based on systematic
mistakes or successes.

• Direct analogy to attention. While each Transformer
layer uses self-attention, the FGWP module can be
viewed as a simpler, global “attention-like” operation
for the final pooling step. Instead of querying token
embeddings solely with internal hidden states, FGWP’s
“query” is partially driven by an external feedback vec-
tor, providing a distinct handle on historical perfor-
mance.

• Why not just more attention? One could feed the
feedback vector into internal Transformer blocks. How-
ever, FGWP offers a modular approach with minimal
architectural alterations. By replacing only the final
pooling layer, it is easier to interpret how feedback
shifts the importance of specific tokens and to decou-
ple historical signals from the main attention stack.

• Example scenarios. Classification tasks can benefit by
focusing on tokens that have historically led to confu-
sion, while RL settings can incorporate reward signals

to highlight salient state-action tokens. In active learn-
ing, tokens known to be ambiguous or consistently
mislabeled can be re-weighted to reduce future errors.

• Feasibility and training overhead. Maintaining the
feedback vector f adds negligible overhead compared
to full Transformer parameters. One can adopt simple
moving averages or small recurrent modules for up-
dates, keeping FGWP efficient and straightforward to
implement.

• Link to continual/online learning. Because f is up-
dated after each batch or episode, FGWP naturally
aligns with algorithms designed for online adaptation.
This synergy helps the model remain robust to shifting
data distributions and evolving task requirements.

2 Related Works
Our Feedback-Guided Weighted Pooling (FGWP) mecha-
nism for Transformers builds upon several research threads:
(1) conventional pooling and attention schemes in large-
scale language and vision models; (2) methods that incorpo-
rate historical or external feedback for iterative refinement;
and (3) approaches that integrate global context vectors
back into neural architectures. Below, we discuss each
line of work and highlight how FGWP differs, conclud-
ing with a brief comparison to Contextual Feedback Loops
(CFL) (Fein-Ashley et al., 2025).

2.1 Token Pooling in Transformer Architectures

Transformers (Vaswani et al., 2017) have become the de
facto standard for modeling sequential data, thanks to their
parallelizable attention mechanism and strong empirical re-
sults. While early variants such as BERT (Devlin et al.,
2019) and GPT (Radford et al., 2019) often use the hidden
state of a dedicated [CLS] token for classification tasks,
later studies have examined alternative pooling strategies,
including mean pooling (Shen & et al., 2018; Liu et al.,
2019), max pooling (Yang et al., 2016), and more sophisti-
cated gating-based pools (Lin et al., 2017; Lee et al., 2019).
However, most of these approaches operate in a static man-
ner, treating each instance in isolation and ignoring how
previous sequences were handled.

Our proposed FGWP advances this line of research by ex-
plicitly introducing a feedback vector into the pooling mod-
ule. Rather than fix or learn a single set of pooling weights,
FGWP conditions the weighting mechanism on performance
statistics or external signals accumulated over time. This
yields a more adaptive aggregation that can shift focus to
tokens known to be relevant (or challenging) from historical
context.
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2.2 Feedback in Neural Network Training and
Inference

The concept of using feedback to guide learning is well-
established in various contexts, including feedback align-
ment (Lillicrap et al., 2016; Nøkland, 2016) and biologically
inspired models of cortical processing (Marblestone et al.,
2016). These lines of work typically study how gradient or
error signals can be returned to earlier layers, either to mimic
brain mechanisms or to reduce reliance on backpropagation
through complex architectures.

Separately, in reinforcement learning (Sutton & Barto,
2018), feedback often takes the form of reward signals that
inform future actions. Some RL-based sequence models
(e.g., (Jaques et al., 2017; Bahdanau et al., 2017)) incorpo-
rate a reward-driven modification of attention scores, though
these remain application-specific. In contrast, our approach
is architecture-agnostic regarding the source of the feed-
back: FGWP merely requires a vector encoding perfor-
mance statistics or meta-information, allowing it to be used
in supervised, self-supervised, or reinforcement scenarios.

2.3 Iterative Refinement and Historical Context

Several works in computer vision and NLP apply iterative
refinement techniques to produce better representations (Li
et al., 2017; Dai et al., 2019; Bai et al., 2019). For in-
stance, recurrent vision models refine image features over
multiple cycles (Li et al., 2017; Savinov et al., 2018), while
Transformer-XL (Dai et al., 2019) caches hidden states from
prior segments to maintain longer-context language mod-
eling. These systems implicitly encode history via hidden
states or memory modules. By contrast, FGWP uses a com-
pact feedback vector that explicitly captures how the model
has performed and re-injects this signal during the pool-
ing step, enabling tokens to be weighted based on prior
successes or errors.

2.4 Aggregator Tokens and Learned Summaries

A parallel research direction studies learned “aggregator” or
“summary” tokens in Transformers (Devlin et al., 2019; Liu
et al., 2019; Roberts et al., 2020). In these approaches, one
or more special tokens absorb information from other tokens
via attention, and the final hidden state(s) of these aggregator
tokens act as the sequence representation. While aggregator
tokens can be powerful, they do not inherently adapt across
training iterations in response to external feedback. FGWP,
however, modulates the pooling weights via a dedicated
f -dependent alignment function (Eqs. 2–4). Hence, our
approach can be viewed as a complement or extension to
aggregator tokens: they could remain present, but the final
pooling could still incorporate a feedback-guided weighting
step.

2.5 Comparison to Contextual Feedback Loops

Recent work on Contextual Feedback Loops (CFL) (Fein-
Ashley et al., 2025) also highlights the importance of top-
down signals, introducing a mechanism where higher-level
context vectors are fed back to earlier layers for iterative
refinement. In contrast:

• Scope of feedback. CFL addresses within-model feed-
back, iteratively updating the internal hidden states of
the same input in multiple passes. Our FGWP handles
across-sequence or across-iteration feedback, focusing
on how past examples can adjust the token weighting for
new inputs.

• Pooler vs. layer feedback. CFL modifies lower-level fea-
tures with signals derived from top-layer outputs, whereas
FGWP specifically targets the final pooling stage, main-
taining a lean architecture change while leveraging an
external feedback vector.

• Ease of integration. FGWP can be seamlessly plugged
into existing Transformers in place of mean-pooling or
[CLS]-pooling, whereas CFL may require unrolling the
network and updating internal states repeatedly.

2.6 Summary

FGWP unifies ideas from attention, recurrent feedback,
and aggregator tokens into a single, lightweight module
for feedback-aware pooling. By conditioning token im-
portance on a historical or external feedback vector, our
method dynamically emphasizes (or suppresses) tokens as
needed. This stands in contrast to traditional pooling meth-
ods or aggregator tokens that are either static or purely
model-internal, ensuring broader applicability across vari-
ous transformer-based tasks and training regimes.

3 Method
In this section, we detail our proposed Feedback-Guided
Weighted Pooling (FGWP) mechanism for Transformer-
based architectures. Our approach generalizes beyond sim-
ple mean pooling or [CLS]-token representation by ex-
plicitly incorporating feedback signals from previously pro-
cessed data. Below, we present the rationale for using feed-
back, define the key components of the algorithm, and pro-
vide the theoretical underpinnings of our method.

3.1 Motivation and Rationale

In many real-world applications (e.g., language modeling,
classification, or reinforcement learning), model perfor-
mance on past inputs can inform how future inputs should
be processed. Standard Transformers compress token repre-
sentations into a single vector by either (i) taking the hidden

3



Feedback Pooling

Figure 1. An overview of the proposed Feedback-Guided Weighted Pooling (FGWP) mechanism. The feedback vector f , updated from
historical performance, is used to modulate the token embeddings hi produced by the Transformer. This dynamic weighting scheme
results in a context-dependent pooled representation H that can emphasize tokens based on external signals.

state of a dedicated [CLS] token or (ii) mean-pooling over
the hidden states. Such static pooling ignores how the model
has performed on related inputs in previous training steps.

We posit that feedback-aware pooling, in which the model
learns to weight different parts of the input sequence based
on its historical performance or other external signals, leads
to richer, context-dependent representations. Concretely, we
maintain an explicit feedback vector that reflects model per-
formance or domain knowledge. This vector then modulates
token-level weighting, allowing the model to adapt its focus
according to historical successes and errors.

3.2 Notation and Preliminaries

Let us denote an input sequence of length n as

X = (x1, x2, . . . , xn),

where xi corresponds to the i-th token (e.g., a word in NLP
or a patch embedding in a ViT). A Transformer encoder
produces a sequence of hidden states:(

h1,h2, . . . ,hn

)
,

where hi ∈ Rd is the contextual embedding for token xi.
We wish to pool these hidden states into a single represen-
tation H ∈ Rd for downstream tasks (e.g., classification,
policy learning).

Crucially, we assume access to a feedback vector ft−1 ∈ Rm

that encodes relevant information from previous steps or
sequences. For instance, ft−1 could summarize token-level
misclassifications, reward signals, or external supervision.
The index t denotes the current batch or iteration; ft−1 is
thus the feedback computed after processing the (t− 1)-th
batch or sequence.

3.3 Feedback Vector Dynamics

Let ft denote the feedback vector available at iteration t.
More formally, we define:

ft = UPDATE
(
ft−1, gt−1

)
, (1)

where gt−1 is a newly computed feedback statistic (e.g., a
vector of token-level losses or a single reward scalar). The
function UPDATE(·) may be a simple exponential moving
average, a feedforward neural network, or a recurrent archi-
tecture (e.g., an LSTM) that aggregates the old feedback
vector ft−1 and the new feedback gt−1 into an updated state
ft.

This design choice allows the model to maintain longer-
term memory of how previous examples were handled. For
the sake of clarity, the main text below uses f to denote
the (constant) feedback vector available when pooling the
hidden states for the current sequence. Section 3.7 of a larger
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paper could discuss the detailed instantiation or training
specifics of UPDATE(·).

3.4 Feedback-Guided Weighted Pooling

Scoring Function. Our key contribution is a feedback-
guided alignment score si for each token embedding hi.
This scalar indicates how crucial the i-th token is, given the
current feedback f . Formally, we define

si = v⊤ ϕ
(
Wh hi + Wf f + b

)
, (2)

where Wh ∈ Rr×d and Wf ∈ Rr×m are learnable weight
matrices, b ∈ Rr is a bias term, v ∈ Rr is a projection
vector, and ϕ(·) is a non-linear function (e.g., tanh). Intu-
itively, Wh hi captures the token embedding’s contribution,
Wf f encodes the feedback, and b and v help map these
interactions to a single scalar.

Softmax-Based Weighting. After computing
{s1, s2, . . . , sn}, we convert these scores into a probability
distribution over tokens:

αi =
exp(si)∑n
j=1 exp(sj)

, i = 1, 2, . . . , n. (3)

Thus, {αi}ni=1 form a set of attention-like weights that sum
to 1. Larger si yields larger αi and hence a higher relative
weight for that token.

Pooled Representation. The final sequence-level repre-
sentation H is obtained via a weighted sum:

H =

n∑
i=1

αi hi. (4)

Unlike simple mean pooling, our method actively reweights
token embeddings based on the external feedback vector
f . Consequently, the model can adaptively focus on to-
kens known (through feedback) to be either problematic or
rewarding in prior training steps.

3.5 Optimization and Training

The FGWP mechanism seamlessly integrates into existing
Transformer architectures. Specifically, if we denote by Θ
the full set of model parameters (including Wh, Wf , b, and
v), and by L a task-specific loss function (e.g., cross-entropy
for classification, or negative log-likelihood for language
modeling), we optimize:

min
Θ

E(X, y)∈D

[
L
(
H, y

)]
, (5)

where H is defined by Eqs. (3)–(4). Gradients backpropa-
gate through the scoring function in Eq. (2) and the feedback

vector f (if f is learnable or partially learnable). If f is ex-
ternally updated (e.g., via an RL signal), then the gradient
w.r.t. f may be disconnected, and f can be viewed as a fixed
or slowly updated context.

3.6 Discussion and Theoretical Considerations

By incorporating f into the token-alignment scoring process,
our approach offers the following advantages:

• Adaptivity: The weights αi can shift significantly be-
tween iterations in response to new feedback signals,
allowing the model to correct biases or focus on con-
sistently misclassified tokens.

• Expressiveness: Unlike mean pooling, which assumes
uniform token importance, our method learns a distri-
bution over hidden states guided by historical perfor-
mance metrics.

• Compatibility: FGWP is orthogonal to other architec-
tural improvements (e.g., improved attention mecha-
nisms); it only replaces the final pooling step.

In practice, this leads to a more flexible and powerful se-
quence embedding that can improve downstream perfor-
mance, especially in settings where partial feedback (e.g.,
known error sources, reward signals) is available.

3.7 Implementation Details

While the precise implementation of UPDATE in Eq. (1) and
the shape of f can vary, a common strategy is to maintain
one feedback vector per training run (or per mini-batch)
and update it with the average loss or classification errors
from the most recent batch. Alternatively, one may employ
a recurrent architecture to process a history of per-token
statistics. The computational overhead of FGWP is minimal:
the main additions are (i) the linear transformations Wh

and Wf , and (ii) the scalar projection v⊤, both of which
involve O(d× r) parameters, where r is the dimension of
the hidden projection space in Eq. (2). This is typically
negligible compared to the full Transformer parameters.

Additional Practical Considerations.

• Clarity and interpretability. Because FGWP pro-
duces a single set of weights {αi} for the final repre-
sentation, it is straightforward to see which tokens are
being up- or down-weighted in response to feedback
signals. This can be especially useful in debugging or
active-learning pipelines.

• Synergy with existing layers. Transformers already
leverage multi-head self-attention in the intermediate
layers. FGWP does not conflict with these operations;
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instead, it adds an external lens (the feedback vector
f ) at the last stage to re-emphasize or de-emphasize
certain tokens based on historical insights.

• Ease of integration. Modifying only the pooling step
ensures minimal code changes in frameworks where
Transformer modules are already standardized. Practi-
tioners can treat FGWP as a drop-in replacement for
mean or [CLS] pooling.

In summary, the proposed FGWP mechanism can be easily
integrated into a Transformer-based encoder or encoder-
decoder system, offering a theoretically grounded yet prac-
tically simple method of feedback-aware token pooling.

4 Experiments
In this section, we present empirical evaluations of our pro-
posed Feedback-Guided Weighted Pooling (FGWP) mech-
anism (Section 3). Our experiments address the following
core questions:

1. Performance Gain: Does FGWP yield improvements
over standard Transformer pooling (e.g., [CLS]-based
or mean pooling)?

2. Feedback Sensitivity: How sensitive is FGWP to dif-
ferent types of feedback (e.g., batch-level vs. token-
level)?

3. Overhead: How much computational or parametric
overhead does FGWP introduce?

4. Generality: Does FGWP perform well across multi-
ple modalities (text, images) and tasks (classification,
language modeling, RL)?

4.1 Datasets

We evaluate on a diverse set of standard benchmarks:

• Text Classification:

– IMDb (Maas et al., 2011): 50K movie reviews
labeled for sentiment.

– AG News (Zhang et al., 2015): 120K news arti-
cles classified into four categories.

• Language Modeling:

– WikiText-2 (Merity et al., 2016): Over 2M tokens,
used to measure perplexity.

• Vision:

– CIFAR-10 (Krizhevsky, 2009): 50K training im-
ages and 10K validation images (10 classes).

– ImageNet (Deng et al., 2009): 1.28M training
images and 50K validation images (1,000 classes),
providing a large-scale testbed.

• Reinforcement Learning (RL):

– Text-Based Game Environment (Côté et al.,
2018): A simple RL environment with textual
observations, reporting average reward.

4.2 Baselines

We compare FGWP to standard Transformer pooling ap-
proaches:

• Transformer-CLS: Uses the final hidden state of the
special [CLS] token.

• Transformer-Mean: Averages the final-layer repre-
sentations of all tokens (or patches).

• Transformer-Attn: Learns an attention distribution
over token/patch embeddings but without external feed-
back.

All methods share the same Transformer architecture (layers,
hidden size, attention heads). Only the pooling approach
differs.

4.3 Feedback Signals and Update Function

For FGWP, we consider two ways to build and update the
feedback vector f :

1. Batch-Level Feedback (FGWP-Batch):

ft = α ft−1 + (1− α) FF(losst−1),

where α is a decay parameter and FF(·) is a single-
layer feedforward network. This feedback is updated
after each mini-batch using the average loss.

2. Token-Level Feedback (FGWP-Token): An LSTM-
based update function aggregates token- or patch-
specific errors. This finer-grained feedback highlights
which tokens or patches have contributed most to errors
in recent training iterations.

4.4 Implementation Details

Architecture. We build on a Transformer encoder with
L layers, hidden dimension d, and h attention heads. For
text classification, we set L = 6, d = 512, and h = 8. For
language modeling, we use L = 12, d = 768, and h = 12,
matching common baselines.

For CIFAR-10 (Krizhevsky, 2009), we use a small Vision
Transformer (ViT) with a 4× 4 patch size, while for Ima-
geNet (Deng et al., 2009), we scale to larger ViT variants.
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FGWP Parameters. From Eq. (2), FGWP introduces:

Wh ∈ Rr×d, Wf ∈ Rr×m, v ∈ Rr, b ∈ Rr.

We fix r = 64 and use ϕ(·) = tanh to balance expressive-
ness and overhead.

Optimization. All models are trained using AdamW with:

• learning rate = 3× 10−4

• weight decay = 1× 10−5

• linear LR decay.

We train for 10 epochs on each text classification dataset,
for 50K steps on WikiText-2, for 100 epochs on CIFAR-10,
and for 90 epochs on ImageNet (unless stated otherwise).
Text tasks use a mini-batch size of 32; vision tasks use 128.

Feedback Schedule. In FGWP-Batch, we choose α =
0.9. In FGWP-Token, we use an LSTM with a hidden
size of 32 and update f every 100 tokens or patches to limit
overhead.

4.5 Evaluation Metrics

We report:

• Accuracy (%) for IMDb (Maas et al., 2011), AG
News (Zhang et al., 2015), CIFAR-10 (Krizhevsky,
2009), and ImageNet (Deng et al., 2009)

• Perplexity for WikiText-2 (Merity et al., 2016)

• Average reward for the text-based RL task (Côté et al.,
2018)

All results are averaged over three random seeds unless
stated otherwise.

4.6 Main Results on Text Tasks

Table 1 shows that FGWP outperforms standard pooling
approaches on both text classification (IMDb (Maas et al.,
2011), AG News (Zhang et al., 2015)) and language model-
ing (WikiText-2 (Merity et al., 2016)). Token-level feedback
(FGWP-Token) generally offers a slight edge over batch-
level feedback (FGWP-Batch).

4.7 Vision Experiments: CIFAR-10 and ImageNet

CIFAR-10 Results and Ablation. We first run experi-
ments on CIFAR-10 (Krizhevsky, 2009) for rapid prototyp-
ing and ablations. Figure 2 plots validation accuracy over
80 epochs, comparing:

Table 1. Comparison of different pooling strategies on text classi-
fication (accuracy, %) and language modeling (perplexity). Best
result in bold.

Model Classification (Acc %) LM (PPL)

IMDb AG News WikiText-2 Toy RL

Transformer-CLS 87.0 92.2 34.5 15.1
Transformer-Mean 86.5 91.8 34.2 14.8
Transformer-Attn 87.4 92.5 33.9 14.5

FGWP-Batch (Ours) 88.3 93.0 33.2 14.1
FGWP-Token (Ours) 88.1 93.2 33.1 13.9

Figure 2. Ablation on CIFAR-10 over 80 epochs. FGWP consis-
tently outperforms the standard Transformer (No-FGWP).

• No-FGWP (Standard Transformer)

• FGWP-dim64 (feedback projection r = 64)

• FGWP-dim256 (feedback projection r = 256)

• FGWP-dim64-ZeroFB (feedback reset to zero each
epoch, removing historical carryover)

Table 2 summarizes final validation accuracy for each vari-
ant and provides p-values from a two-sample t-test com-
paring to No-FGWP. All FGWP variants show statistically
significant gains.

ImageNet Results. Next, we evaluate FGWP on Ima-
geNet (Deng et al., 2009) using our three ViT variants (Base,
Large, Huge). Table 3 shows that FGWP yields a consistent
improvement of 0.5–1.2% in top-1 accuracy, demonstrating
effectiveness at scale.

4.8 Additional Ablation Studies (Text)

Beyond CIFAR-10, we also conduct a second ablation on
the IMDb (Maas et al., 2011) text classification dataset
to isolate the effect of each FGWP component. Our main
findings are:

• Removing the Feedback Vector: If we set Wf f = 0,
FGWP reverts to a standard attention-based pooling,
resulting in a 1%–2% accuracy drop.
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Table 2. CIFAR-10 Ablation. Mean top-1 validation accuracy (%)
and two-sample t-test p-value vs. No-FGWP. Bold is best among
FGWP. Results are averaged over 3 seeds.

Method Top-1 Val Acc (%) p-value (vs. No-FGWP)

No-FGWP (Baseline) 82.1± 0.3 –
FGWP-dim64 83.6± 0.4 0.01
FGWP-dim256 84.1 ± 0.2 0.005
FGWP-dim64-ZeroFB 83.3± 0.5 0.02

Table 3. ImageNet Results. Top-1 validation accuracy (%) for
standard ViT vs. ViT + FGWP. We also report parameter counts
(in millions). The last column (∆) shows the accuracy gain from
using FGWP.

Model Params (M) Top-1 Acc (%)
∆

Standard FGWP Standard FGWP
ViT-Base 86.78 87.21 82.3 83.1 +0.8
ViT-Large 303.92 305.44 84.2 85.1 +0.9
ViT-Huge 630.27 633.92 85.3 86.5 +1.2

• Alternative Update Functions: Using an exponential
moving average (EMA) for f is more stable than a sim-
ple summation of losses, especially for noisy feedback.

• Feedback Dimension r: Larger r (e.g., 256) can
slightly boost accuracy but yields diminishing returns
beyond r ≈ 64.

4.9 Analysis and Discussion

Feedback Granularity. Token- or patch-level feedback
typically outperforms batch-level feedback, as it provides
more precise information on which inputs need emphasis.
However, batch-level feedback is simpler and still offers a
strong performance lift over no feedback.

Overhead. FGWP introduces about 0.5% parameter over-
head and generally increases training time by less than 5%,
making it a practical add-on in most settings.

Applicability. Though we focus on text and vision tasks,
FGWP is applicable to any sequence- or patch-based Trans-
former architecture. Its ability to adaptively reweight em-
beddings based on performance history has broad utility
across domains.

4.10 Conclusion of Experiments

In summary, our experiments show that FGWP out-
performs standard Transformer pooling on both text
(IMDb (Maas et al., 2011), AG News (Zhang et al., 2015),
WikiText-2 (Merity et al., 2016)) and vision tasks (CIFAR-
10 (Krizhevsky, 2009), ImageNet (Deng et al., 2009)), with
additional benefits in a toy RL setting (Côté et al., 2018).
Notably, the parameter and computational overhead are min-

imal across model scales (from small to very large ViT
architectures). FGWP thus provides a simple, effective
mechanism to integrate historical performance feedback
into Transformer pooling.

5 Conclusion
We presented Feedback-Guided Weighted Pooling (FGWP),
a novel mechanism for refining sequence representations
in Transformer-based architectures by integrating external
performance cues. Rather than relying on static averaging or
a single special token, FGWP leverages a compact feedback
vector to dynamically reweight token embeddings. Through
extensive experiments on both text and vision tasks, we
showed that incorporating even a simple feedback signal
can produce notable gains in accuracy and interpretability
with minimal additional overhead.

A key takeaway is that historical information—often encap-
sulated in aggregate metrics like error rates, reward signals,
or domain-specific cues—can greatly enrich how a model
pools hidden states. By adapting token weights based on
past successes and failures, FGWP learns to correct biases,
focus on challenging segments, and ultimately construct
more nuanced sequence embeddings.

In future work, we plan to explore:

• Fine-grained feedback functions that can track and
update specialized feedback vectors per class or per
token type.

• Applications in continual learning, where adaptive
pooling might mitigate catastrophic forgetting by sys-
tematically highlighting tokens associated with previ-
ously learned skills.

• Multi-task and multimodal extensions, wherein distinct
feedback channels (e.g., text vs. image vs. speech)
could jointly guide a shared pooling mechanism.

We believe our approach opens new avenues for feedback-
driven modeling in Transformers and underscores the
broader potential of unifying architectural design with in-
sights from iterative training dynamics.
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